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Abstract: Measures of statistical dependence is of great importance for machine learning and statistical models.
Recently, a new measure, the robust copula dependence (RCD) is shown to be equitable in treating dependence
of linear and nonlinear relationships. The paper propose extensions of RCD to multivariate and conditional cases,
which is crucial for many applications. We study the theoretical and empirical properties of the extended RCD.
We successfully apply to several example applications including learning delayed time in nonlinear systems, inde-
pendence testing with mixture alternatives and feature selection.
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1 Introduction

The measure of dependence among random variables
is an important topic in statistics and machine learn-
ing. In many real word applications, the solutions of
the problem are based on the usage of statistical de-
pendence measures [de Siqueira Santos et al., 2013;
Jiang et al., 2015]. In particular, recently there are
proposals of equitable dependence measures which
assigns similar values to equally noisy (linear or non-
linear) relationships [Reshef et al., 2011; Murrell et
al., 2016; Ding et al., 2017]. The equitability con-
cept is first developed in the bivariate cases. How-
ever, applications in a wide range of studies require
the dependence measures for multidimensional and/or
conditional scheme. In this paper, we propose exten-
sion of a recent equitable dependence measure, the
robust copula dependence (RCD), to the multivariate
and conditional cases. The contributions of this paper
are:

1 We summarize the two directions for extending
the multivariate dependence measure and pro-
posed the multivariate version of the robust cop-
ula dependence. The properties of the multivari-
ate RCD and its estimator are discussed.

2 We provide the conditional extension of the ro-
bust copula dependence of which the properties

are discussed.

3 We extend the concept of robust equitability to
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multidimension and apply RCD in the indepen-
dence test with mixture alternatives.

4 We apply the conditional RCD in the feature se-
lection problem, and proposed a conditional de-
pendence measure based filter-type feature selec-
tion method.

5 We apply the RCD in the chaotic and delayed
systems to reconstruct the delay time, which is
of great importance in the study of time-delayed
system.

The structure of this paper is as follows: Sec-
tion 2 defines the multivariate RCD, and discuss sev-
eral basic important properties based on the gener-
alization of Renyi’s axioms on bivariate case[Rényi,
1959; Wolff, 1980]. We then discuss the conditional
version of RCD. In section 3, we consider the estima-
tion of RCD as the statistical functionals of the copula
density function. Its relationship with statistical test
is also discussed here. The numerical examples and
some applications of the multidimensional and con-
ditional RCD are presented in section 4. Finally, we
conclude this paper in section 5.

2 Methodology

Roughly speaking, the RCD is defined as the distance
between the copula density of the data and the inde-
pendent copula (density). The properties, such as eq-
uitability, for the bivariate RCD, and its comparison
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with mutual information and other dependence mea-
sures are studied in Chang et al. [2016]; Ding et al.
[2017]. Here we first review the definition of RCD,
then we define the multivariate and conditional exten-
sion of RCD.

2.1 The Robust Copula Dependence

The copula is a multivariate probability distribution
for which the marginal probability distribution of each
variable is uniform. For two random variables X and
Y,letU = Fx(X),V = Fy(Y), where F'x and Fy
are the cumulative distribution functions (CDFs) of X
and Y. Then U and V both follow the uniform distri-
bution on I = [0, 1]. The joint density of U and V is
the copula density for X and Y.

Definition 1 (Copula Distance and RCD) Let
c(u,v) denote the copula density for the random
vector Z = (X,Y). The copula distance berween X
andY is

1
CD, = 5 // le(u,v) — 1|*dudv, o> 0. (1)
12

In particular, we call C'Dy the robust copula depen-
dence and denote it by RCD(X,Y).

2.2 Multivariate RCD and Its Properties

The above RCD measures the dependence between
the two components of the bivariate vector 7 =
(X,Y). For a multivariate vector, there are two pos-
sible dependence that can be studied. The first type
is the dependence among all components of a p-
dimensional vector X = (X1, --- , Xp). That is, we
want to measure the dependence among the p random
variables X, --- , X, which we call an internal-type
of multivariate dependence. The second type is the
dependence between two sub-vectors of the original p-
dimensional vector, which we call an external-type of
dependence. The second type of dependence is more
useful in regression/classification applications, where
one sub-vector represent responses and one sub-vector
represent the regressors. We discuss both type of ex-
tensions of RCD in the following.

2.2.1 Internal RCD

The bivariate RCD is based on the distance be-
tween the bivariate joint copula density and the bi-
variate independence copula. Similarly for a p-
dimensional random vector X = (X1, - - , Xp), we
define the internal RCD using the distance between
the p-dimensional joint copula density and the p-
dimensional independence copula.
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Definition 2 (Multivariate RCD) Let X =
(X1,---,Xp) Dbe a p-dimensional multivari-
ate random vector with the copula density
c(@) = c(ur, - ,up). The multivariate robust

copula distance of X is

- 1
RCD(X) := /c(ﬁ) _1)di
I

1
= 2/H|C(U1,-" L Uup) — 1|duy - - - duyp.
2

The normalization factor is of the same value % in both
bivariate and multivariate cases. After some basic al-
gebra, one can show that RCD has the following two
alternative forms, which can be used for estimation.

Proposition 3 (Alternative forms) Let X =
(X1,---,Xp) Dbe a p-dimensional multivari-
ate random vector with the copula density
c(@) = c(u1,- - ,up). Then,

le(ur, -+ up) — 1|duy - - - duy,

RCD(X) = /

c>1

:/ le(ur, -+ ,up) — 1|duy - - - duy.
c<1

3)

Remark. The two alternative forms in Propo-
sition 3 could also be written as [[c(u1,- -+ ,up) —
idug -+ -dupor [[e(ur, - ,up) — 1 _duy - - - duy,
where fi and f_ denotes the positive and negative
parts of f.

We can also define the RCD on the raw scale (for
raw data X ) directly through the distance between the
joint density and the independent density. The RCD
definitions coincide on the raw scale and on the copula
scale, as summarised in Proposition 4.

Proposition 4 (Coincide in two scales) Let X =
(X1,---,Xp) be a p-dimensional multivariate ran-
dom vector with the joint density f(x1,---,xp),
marginal densities f(x1),--- , f(xp), and the copula

density c(u) = c(u1,- - - ,up). Then, RCD(X) is

up) — 1dug -+ - duy

ap) — flan) - flay)|dey - day,
“

Volume 18, 2019



WSEAS TRANSACTIONS on MATHEMATICS

While the definition on raw scale may be easier
to understand, the copula scale definition has follow-
ing advantages. From a theoretical point of view, the
analysis is cleaner when we focus exclusively on the
dependence structure, the copula. From a practical
point of view, the copula scale definition allows us to
avoid dealing with as many as p+ 1 density estimation
needed in the raw scale definition.

Furthermore, RCD has some theoretical prop-
erties desirable for a general multidimensional de-
pendence measure. Proposition 5 summarizes such
properties of RCD based on the Wolff’s extension of
Renyi’s axioms[Rényi, 1959; Wolff, 1980].
Proposition 5 (Woff’s extension) Ler X =
(X1,---,Xp) be a p-dimensional multivariate ran-
dom vector with copula density c(u) = c(u1, -+, up).
Then,

a. RCD(X) > 0 and RCD(X) = 0 if and only if
X1,--+, X, are independent.

b. RCD(0(X)) = RCD(X), where o is a permuta-
tion.

c. RCD(X) is invariant under strictly increasing
transformations of the components of X.

d. RCD(X) is invariant under strictly decreasing
transformations of the components of X.

7Y9); Z - (Zla"' 7Zt) and
Z), where p = s + t. It follows that
< RCD(Y) + RCD(Z) + 1 [|ex —

f. Let ¢, be a sequence of copula density which

converge almost surely to c, then RCD(c,,) —
RCD(c).

Remark. Property (a) is equivalent to the state-
ment that RCD(C) 0 if and only if C I,
where C' is the copula function for X, and I is the
p-dimensional independence copula. Property (c) and
(d) are the direct results of the use of copula.

One of the exciting properties of the bivariate
RCD is the robust equitability [Chang et al., 2016;
Ding et al., 2017]. This concept can be general-
ized to multi-dimensional case. Let IT(uq,...,u;) =
Uu1Uu2...u;, be the uniform (independent) copula on the
unit hyper-cube 17, to which we add a e proportion of
deterministic signal Cs, where C is a singular cop-
ula [Nelsen, 2006]. An equitable dependence measure
should give the same value € regardless of which type
of deterministic signal C' is used.
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Definition 6 A dependence measure D(X) is robust-
equitable if and only lfD(X) = ¢ whenever X fol-
lows a distribution with copula C = €Cs + (1 — €)II,
for any singular copula Cs.

With the above definition, we have the following
property of RCD: when a deterministic signal is hid-
den in the background noises, RCD only depends on
the noise level of the data.

Proposition 7 RCD is robust equitable.

2.2.2 External RCD

In some applications, like feature selection, we are not
purely interested in the internal dependence measure
of the multivariate vector. Rather, we care more about
how strong two random vectors X and Y are related.
Thus, this leads to the concept of external RCD.

Definition 8 (External RCD) Let X =
(X1, ,Xp) and Y = (Y1,---,Y,) be p and

q-dimensional multivariate random vectors with
the copula density c(i) c(uy, - ,up) and
c(0) = c(v1,- - ,vq) respectively. The multivariate
robust copula distance between X and Y is

/yaa

Remark. To distinguish from the internal RCD,
we denote the external measure as RCD, with a sub-
script *. For application such as the regression analy-
sis, the response is one random variable Y. That can
be considered as a special case, then V = Fy (Y) fol-
lows the uniform distribution with density 1 and we
have

RCD.( c(@)e(V)|dudv. (5)

RCD.( /| c(ti,v) — (i) |didv.  (6)

Results similar to Proposition 3 and 4 hold for
RCD, as summarize below.

Proposition 9 Ler X (X1, , X))
Y = (Y1,---,Yy) be p and q-dimensional mul-
tivariate random vectors with the joint density
flzr, - Y1, 5 Yq)s marginal  densities
f($1)a e af(xp)’ f(y1)7 e 7f(yq)’ the copula den-
sities c(@) = c(u1, -+ - ,up) and c(V) = c(vy, - -+ ,vq)
respectively. Then we have

and
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zp)f (Y,

(®)

2.3 The Conditional RCD

Conditional dependence is of great importance in
many application, such as causal inference, feature se-
lection and graphical models, etc. In this part, we ex-
tend the RCD by considering a third random vector Z,
and defines the conditional RCD of X and Y given Z
to measure the conditional dependence.

Definition 10 (Qonditional RCD) Let X =
(X1, -, X)), Y =Yy, V), Z=(Z1, -, Z)
be p, q, and r-dimensional multivariate random vec-
tors with the copula density c(@) = c(u1,--- ,up),
c(V) = c(vi,- -+ ,vq), and c(W) = c(wy,--- wr)

The conditional robust copula distance of X and Y
given 7 is defined as:

CD(X
fc

| )

N[ — ;U
@l “<11
SL \VI1

— ¢(t, W) (U, W) |dudvdid.
©)

We have the corresponding version of Proposi-
tion 3 for the conditional RCD.

Proposition 11 (Coincide in two scales) Let X =
(—X17‘.' 7Xp);Y: (Y17”‘ 7}/;]))22 (Zl7”‘ 7Z7‘)
be p, q, and r-dimensional multivariate random vari-
ables with the conditional joint density f(Z,Y]|Z),

conditional marginal density f(Z|Z), f(y|Z), and
the copula density c¢(i) = c(ui, - ,up), c(¥) =
c(vr, -+ ,vq), and c(W) = c(wy, - -+ ,wy). Then,

\e(it, T, @) — (i, @) (v, 0)|dididi
' (10)
_E.| / / F@12) - F(@12)(19)|dzdg).

3 Statistical Properties

In this section, we explore the basic property of the es-
timator for RCD and discuss the relationship between
RCD with the independence test.

E-ISSN: 2224-2880

171

Yi Li, A. Adam Ding

3.1 Statistical Error

We first consider the internal RCD. If we have a cer-
tain density estimator ¢, we could plug it in the inte-
gration with respect to the empirical distribution func-
tion, which yields the following estimator.

1
— — 1. 11
@) | (11)

Remark. Similarly, we could have other pos-
sible forms of /tl& egtimator based on the alterna-
tives of RCD: RCD(X) = o= Y% | [=1~ — 1]+, and

2n &(di)

RCD(X) = L S0 [k — 11
We now cons1der the consistency result of the es-
timator (11). The following result is a direct conse-

quence of the slutsky theorem [Ferguson, 1996].

Theorem 12 Assume the p-dimensional random vari-
able X has the copula density c bounded below by
€0 > 0. Let S be a compact proper subset of IP. For a
consistent density estimator ¢, say, the kernel density
estimator, we have

IRCD(X) —

as n — oQ.

RCD(X)| — 0 (12)

Similar results also hold for the estlmator of ex-
ternal RCD,, which is RCD, (X Y) = 2n PRI
CE?;)Cg) , and the estimator of conditional RCD,
which is RCD(X Y|Z) =

1.

(i, W ) (T, W;)

2n =1 ‘ c(t;,0;,0;)

3.2 Link with Statistical Test

Even though the idea of equitability mainly aims at
comparing the strength of hidden signal, the RCD is

also closely related to the 1ndependence test. Suppose

two random vectors X and Y have marginal proba-

bility measures P, and P, with the joint distribution

Pyy. Cons1der1ng the following independence test be-

tween X and Y
Hy (X Y)
Hy (X Y)

P,P,
P, # P,P,.

13)
(14)

It turns out that the RCD quantifies the difficulty
of this test and provides an upper bound of the power.

Theorem 13 Let X and Y have marginal probability
measures P, and Py, Py = P,IP, and Py = P,,. For
any test ¢ = ¢(X,Y) € {0,1} that indicates which
hypothesis in (13) should be true, we have

power :=1—-f<a+ 2RCD()€7§7), (15)
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where o = Py(¢p = 1) and 5 = P1(¢p =
Type-1 and Type-II error respectively.

0) are the

Theorem 13 also shows that the total error that a
test made is lower bounded by 1 —2RCD(X,Y"). This
means the test in (13) becomes easier (smaller lower
bound of the total error) when RCD is large (the dis-
tributions are apart). The proof of the above theorem
can be found in Appendix.

4 Numerical Examples

In this section, we consider three applications of the
extended RCD. First, we use RCD for independence
testing. We empirically investigate the independence
testing power performance of RCD with other depen-
dence measures (Pearson’s correlation of coefficient,
distance correlation [Székely et al., 2009], mutual in-
formation [Blumentritt and Schmid, 2012; Joe, 1989],
and some kernel based dependence measure [Gretton
et al., 2005; Fukumizu et al., 2007; Poczos et al.,
2012; J Reddi and Péczos, 2013]). Second, we pro-
vide a feature selection method based on the condi-
tional RCD. Last, we provide an application of the
RCD to successfully reconstruct the time lag in non-
linear chaotic time-delayed system.

4.1 Statistical Power Analysis

In this part, we consider the power performance for
the independence test under mixture alternative as
defined in robust-equitability in (6). Specifically,
six nonlinear functional types (circle, parabola, sine
wave, cross, spiral, and Lorenz system) are considered
as in Figure 1. Each signal is mixed with independent
uniform noise with various mixture portion.

Within each of the six scenarios, we compare test-
ing of independence with different dependence mea-
sures including the Pearson’s correlation coefficient,
distance correlation [Székely et al., 2009], mutual in-
formation [Blumentritt and Schmid, 2012], RCD [Li
and Ding, 2017] and HSIC [Gretton et al., 2005]. The
result of the power analysis is presented in Figure 2.
As we can see from the plot, RCD has the best power
to test the independence over all the six scenarios,
while mutual information also performs well in this
comparison. The other three dependence measures are
unable to detect hidden signals in the mixture model.

4.2 Feature Selection

We now show how the conditional RCD could be
applied in the machine learning problem of feature
selection. We use it in the feature selection proce-
dure based on dependence maximization [Song et al.,

E-ISSN: 2224-2880

172

Yi Li, A. Adam Ding

Figure 1: Six different functional types (circle, parabola,
sine wave, cross, spiral, and Lorenz system) are considered
for the comparison of the power analysis of the indepen-
dence test. Each signal is mixed with independent uniform
noise with various mixture portion.

2012] as following. In the first step, we find the fea-
ture that maximize the RCD with the target variable Y.
Then in each iteration, the RCD, conditional on all the
features that have been selected, is computed between
Y and each feature which has not been selected. The
feature who maximize the conditional RCD is selected
in this iteration. The iterations are repeated until the
desired number of features are selected.

The conditional RCD based feature selection
method is tested on four different datasets from the
UCI Machine Learning Repository! (see Figure 3).
The selected features are used for the prediction of
the target variables. The 5-fold cross-validated mean
squared error is computed with the spline regression
model. The method is compared with the forward and
backward dependence maximization methods with the
Hilbert-Schmidt independence criterion, which is sug-
gested in Song et al. [2012]. The MSE curve in Fig-
ure 3 shows that RCD is very competitive against
other dependence measures, have the best (smallest
MSE) in most cases.

4.3 Recovery of Delayed Time

Time-delayed systems, which arise from a wide range
of natural phenomenons, have been received a lot

"http://archive.ics.uci.edu/ml/index.php
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Figure 2: Power curves for the independence test with mix-
ture alternatives of five dependence measures (Pearson’s
correlation coefficient, distance correlation, mutual infor-
mation, RCD and HSIC). Results are based on 200 repli-
cations in the null and alternative cases. The sample size
is n = 300, and ten signal levels (portions) between 0
and 0.4. The distance correlation is computed with with
energy package in R. The mutual information is computed
with the parmigene package in R.

of attention [Bezruchko et al., 2001; Prokhorov and
Ponomarenko, 2005; Prokhorov et al., 2013]. Specif-
ically, the reconstruction of the delayed time of the
delay-induced dynamics is one of the central issues
in the study of chaotic time series. In this part, we ap-
ply our proposed dependence measure RCD to recover
the delayed time from delayed series. We consider
the following first-order delayed differential equation
with a single delay:

ex' (t) = —x(t) + f(z(t — 7)), (16)
where 7 is the delayed time, € is a model parameter,
and f is a (nonlinear) function. The delayed time 7
is prior unknown to us, and our task is to recovery T
from the data generated from the system described in
(16). We note that the first order derivative can be dis-

cretized with 2/(t) = w where At is the
sampling time unit. In this way, the discretized de-
layed time is d = £;.

The central idea of the application is to vary the
trial delayed time 7, and calculate the dependence be-
tween the series of z(t) and z(t — 7). If 7 hits the true

delayed time, the dependence structure will exhibit a
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Procedure 1 Conditional RCD for feature selection
Input: The full set of features S = {X1,---, X}
and the target variable Y’
Output: The ordered set of features S*
1. 8* « @
: I « argmax RCD(X},Y)

J
¢ §F (Xj)
while S # () do
I + argmax RCD(S\{X,},Y|S*)

J
S* (S*,Xj)
- end while

[\

Y %o 3

Autompg

\ 3 p—f—
0a1 0 \
0s N

s

) 1 2 3 4 s 4 6 7 8
Number of features Numhar of faatirac

Kinematics of Robost Arm 10° Vinyl bromide

o 1 2

ERE 5 4 8
Number of features Number of features

Figure 3: Feature selection results on four different datasets
based on the backward/forward dependence maximization
feature selection in Song et al. [2012] and the proposed
method with conditional RCD.

large spike, compared with other false delayed time
values, as the true system is driven by the current state
and the delayed state with the true delayed time.

As an example, we consider the Mackey-Glass
equation under this type. The system is defined as
follow with a nonlinear function f:

ax(t — )

1+azc(t—71)’ 17

2/ (t) = —bx(t) +

where a, b, c are three parameters. As we can see from
Figure 4, the left plot is an example of the sampled se-
ries of x(t). The first 20000 points of the series are
not taken into account to exclude a transient process.
In the right plot of Figure 4, the dependence measure
is calculated between z(t) and z(t — 7) with differ-
ent choice of the trial delayed time. Result shows that
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RCD could successfully detect the relatively large de-
pendence with the correct delayed time.

Similar settings is applicable with coupled sys-
tems. For example, let z(¢) and y(¢) are coupled with
the above Mackey-Glass equation with different ini-
tial conditions:

az(t—r)

(1) =—by(t) + 12,

The delayed time could be reconstructed in the
similar manner by using the multivariate dependence
between the vector (z(t), y(t)) and the vector (z(t —
7),y(t — 7)). The results of the simulation is pre-
sented in Figure 5. The left panel is an example of
the sampled data for x(¢), while similar pattern holds
for y(t). After applying the multivariate dependence
between (x(t), y(t)) and (z(t — 7),y(t — 7)), the re-
sult for various trial delayed time is in the right plot of
Figure 5. It can be seen from this plot that the RCD

Mackey-Glass RCD
L — signal S
o -
@ =
° a 1=300
= 7 I
< S © _|
® o
n
S <
o S
N |
T T T T S T T T T T 1
0 500 1000 2000 0 100 300 500
t delay time

Figure 4: An example of the Mackey-Glass delayed sys-
tem. The parameters are ¢ = 0.2,b = 0.1,¢ = 10,7 =
300, At = 1. The number of points N = 10000 with
a 20000 washout period. The initial value is chosen with
2(0) = 0.5. The left plot is an example of the sampled se-
ries from the system. The right plot shows the spike of the
dependence at the true delayed time 300.

5 Conclusion and Future Work

In this paper, we generalize the robust copula depen-
dence to multivariate and conditional versions. We
also discuss the robust equitability for multivariate
RCD, and the application of RCD in independence
test, feature selection, time-delayed system analysis,
etc. Results show that RCD could be used as a reli-
able tool for detecting strong linear and nonlinear re-
lationships in noisy data sets. It can also be a power-
ful tool for testing independence and detecting (non-
linear) signals. One open problem arising out of our
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Delayed System RCD
0 | — signal
- - =300
oo}
o S 7
< 7] < 4
x 3
I
o) o
S i
<
g
T T T T T T T T T T
0 500 1000 2000 0 100 300 500

t delay time

Figure 5: An example of the coupled delayed system with
the application of multivariate dependence measures. The
parameters are a = 0.2,b = 0.1,¢ = 10,7 = 300, At = 1.
The number of points N = 10000 with a 20000 washout
period. The initial value is chosen with z(0) = 0.4 and
y(0) = 0.6. The left plot is an example of the sampled
series from the system. The right plot shows the spike of
the dependence at the true delayed time 300.

work is how to apply the conditional RCD in causal in-
ference. In addition, the application of (multivariate)
RCD in other complex systems, such as the climatol-
ogy or biology is also of great interests.
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A Proof of Theorem 13
Proof: Let pg and p; be the density of Py and Py

respectively. For any test ¢, define the rejection region
R={¢ =1} andlet R* = {p; > po}. We have
a+p=1+Py(R)—Pi(R)

:ﬂ+4%—m

:1+/ (Po—p1)+/ (po — p1)
RNR* RN(R*)e

=1—/ !po—pl\-i-/ lpo — p1}
ROR* RO(R*)°

>1-2RCD(X,Y)
The last inequality will become an equality when
R =R".
0
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